6 research outputs found

    Overexpression of Mitochondrial Uncoupling Protein 2 Inhibits Inflammatory Cytokines and Activates Cell Survival Factors after Cerebral Ischemia

    Get PDF
    Mitochondria play a critical role in cell survival and death after cerebral ischemia. Uncoupling proteins (UCPs) are inner mitochondrial membrane proteins that disperse the mitochondrial proton gradient by translocating H+ across the inner membrane in order to stabilize the inner mitochondrial membrane potential (ΔΨm) and reduce the formation of reactive oxygen species. Previous studies have demonstrated that mice transgenically overexpressing UCP2 (UCP2 Tg) in the brain are protected from cerebral ischemia, traumatic brain injury and epileptic challenges. This study seeks to clarify the mechanisms responsible for neuroprotection after transient focal ischemia. Our hypothesis is that UCP2 is neuroprotective by suppressing innate inflammation and regulating cell cycle mediators. PCR gene arrays and protein arrays were used to determine mechanisms of damage and protection after transient focal ischemia. Our results showed that ischemia increased the expression of inflammatory genes and suppressed the expression of anti-apoptotic and cell cycle genes. Overexpression of UCP2 blunted the ischemia-induced increase in IL-6 and decrease in Bcl2. Further, UCP2 increased the expression of cell cycle genes and protein levels of phospho-AKT, PKC and MEK after ischemia. It is concluded that the neuroprotective effects of UCP2 against ischemic brain injury are associated with inhibition of pro-inflammatory cytokines and activation of cell survival factors

    Soy Isoflavones Genistein and Daidzein Exert Anti-Apoptotic Actions via a Selective ER-mediated Mechanism in Neurons following HIV-1 Tat1–86 Exposure

    Get PDF
    HIV-1 viral protein Tat partially mediates the neural dysfunction and neuronal cell death associated with HIV-1 induced neurodegeneration and neurocognitive disorders. Soy isoflavones provide protection against various neurotoxic insults to maintain neuronal function and thus help preserve neurocognitive capacity.We demonstrate in primary cortical cell cultures that 17β-estradiol or isoflavones (genistein or daidzein) attenuate Tat(1-86)-induced expression of apoptotic proteins and subsequent cell death. Exposure of cultured neurons to the estrogen receptor antagonist ICI 182,780 abolished the anti-apoptotic actions of isoflavones. Use of ERα or ERβ specific antagonists determined the involvement of both ER isoforms in genistein and daidzein inhibition of caspase activity; ERβ selectively mediated downregulation of mitochondrial pro-apoptotic protein Bax. The findings suggest soy isoflavones effectively diminished HIV-1 Tat-induced apoptotic signaling.Collectively, our results suggest that soy isoflavones represent an adjunctive therapeutic option with combination anti-retroviral therapy (cART) to preserve neuronal functioning and sustain neurocognitive abilities of HIV-1 infected persons

    Antibodies for biodefense

    No full text
    Potential bioweapons are biological agents (bacteria, viruses and toxins) at risk of intentional dissemination. Biodefense, defined as development of therapeutics and vaccines against these agents, has seen an increase, particularly in the US, following the 2001 anthrax attack. This review focuses on recombinant antibodies and polyclonal antibodies for biodefense that have been accepted for clinical use. These antibodies aim to protect against primary potential bioweapons or category A agents as defined by the Centers for Disease Control and Prevention (Bacillus anthracis, Yersinia pestis, Francisella tularensis, botulinum neurotoxins, smallpox virus and certain others causing viral hemorrhagic fevers) and certain category B agents. Potential for prophylactic use is presented, as well as frequent use of oligoclonal antibodies or synergistic effect with other molecules. Capacities and limitations of antibodies for use in biodefense are discussed, and are generally applicable to the field of infectious diseases

    Method parameters’ impact on mortality and variability in mouse stroke experiments: a meta-analysis

    No full text
    corecore